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Summary: Thermal treatment of p-allenic esters (2) with alumina catalyst in 

aprotic solvents yielded (2E,&Z)-dienoic esters (3) in 57-87s yields 

with 91-100% stereoselectivity. 

p-Allenic esters 2, which are readily obtained from trialkyl orthoacetate 

and propargylic alcohols (I.)', can be converted to 2,4-dienoic esters by the 

prototropic rearrangement with basic or acidic catalysts. 394 However, these 

procedures hitherto reported are not satisfactory in the stereoselectivity. 
4 

OH 
RCHCZCH - R&*~co2R8 > R-CH=CH-CH=CH-C02R' 

1 
2 

In this communication we wish to report a novel, stereoselective synthe- 

sis of (2E,&Z)-dienoic esters (A), which we found out recently and are both 

experimentally simple and economically feasible. The method merely involves 

the thermal treatment of 2 with alumina catalyst5 in aprotic solvent, which 

caused a prototropic rearrangement to give 3 in good yields. Eight examples 

of this rearrangement were investigated, and the results are summarized in 

Table I. Although in several cases (2E,4E)-isomers6 were produced as a minor 

component, this procedure of the transformation of 8-allenic esters to (2E,4~)- 

dienoates excels others 4 in its high stereoselectivity (91-100%). 

Best results were obtained when the allenic esters were heated in non- 

polar solvents such as benzene and xylene with alumina5 (5-10 equiv) at 80- 

138OC. The reaction, being monitored by IR or NMR spectrum, was terminated as 

soon as the starting material disappeared. Usually it took 2-6 h. After 

cooling, the alumina catalyst was removed by filtration and the evaporation of 

the solvent gave the 'H NMR pure (2E,&Z)-diene z7 as a clean oil. 

This synthetic method of (2E,&Z)-d ienoate was adapted to the total synthe- 

ses of several natural products, which are outlined in Scheme I. Ethyl 

(2E,&Z)-decadienoate (z), a component of the odoriferous principle of Bartlett 
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Table I. The Rearrangement of Allenic Esterszto (~E,&z)- 

Dienoic Esters (3) with Alumina Catalyst 
'Ir 

C02R' - 
R/c'\o\CC R' 

A1203 
2 

2 
z. 

Compounds R R' Yielda 

(%) 

Purityb 

((2~4~)~ %I ((2E,4E), %> 

CH 
3 

C2H5 

C3H7 

C3H7 

C5Hll 

C6H13 

'BH17 

C9H19 

CH 
3 

cH3 

CH 
3 

C2H5 

C2H5 

CH 
3 

CH 
3 

CH 
3 

57c 100 

82 96 

80 96 

69 93 

82 100 

82 99 

87 91 

70 96 

(a) Isolated yield. (b) Determined by GLPC. (c) Lower yield 

probably due to higher volatility of the product. 

Scheme I. Total Syntheses of Several Natural Products 

3, R = C5Hll 

7, R = C2H5 

_ RwOH 

Bombykol 9, R = C3H7 
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pears, ' was stereospecifically prepared in 82% yield, as shown in Table I. 

Furthermore 3,” was converted to (2E,4Z)-decadienal (5), a flavour component 

of groundnuts and carrot root. 
9 

Reduction of 2 wit: LiAlH4 (ether, -40°c, 

1 h) gave (2E,4Z)-decadien-l-01 (k)l" in 84% yield. Oxidation ofLwith 

active MnO 
2 ( 

20 equiv, petroleum ether, 25OC, 1.5 h) afforded 5 ' (88% pure, 

70% yield) together with the (2E,4E)-isomer (12%). Methyl (2Ey4Z)-hepta- 

dienoate (2) was similarly converted to (PE,4Z)-heptadienal (z), a flavour 

component of tomato. 
11 

Reduction of 3,b with LiAlH4 gave (2E,4Z)-heptadien- 

l-01 (5)(840/,), which was subsequently oxidized with active Mn02 to afford 

2' (70%) along with 6% of the (2E,4E)-isomer. The current reaction was 

further applied to the preparation of a key intermediate for the synthesis 

of (lOE,12Z)-hexadecadien-l-01, which is the sex pheromone of Bombyx 

mori12'13 named bombykol (L)O Reduction of methyl (2E,4Z)-octadienoate (2) 

with LiAlH4 (ether, -50 - -30°C, 1 h) gave (2E,4Z)-octadienol (&)(73%)14i:5 

which can be converted to bombykol (z) via two steps by the known method. 
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H NMR spectrum and the 

retention time of GLPC with those of an authentic sample prepared by 
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A. Takeda, to be published. 
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